US009176878B2

a2z United States Patent (10) Patent No.: US 9,176,878 B2
Ono et al. 45) Date of Patent: Nov. 3, 2015
(54) FILTERING PRE-FETCH REQUESTS TO 7,774,578 B2* 8/2010 Keltcherccccceoenee. 711/213
REDUCE PRE-FETCHING OVERHEAD 7,930,485 B2* 4/2011 Fertigetal. . . 711137
8,255,633 B2* 82012 Boyleetal.ccceenene. 711/137
(75) Inventors: Tarik Ono, Cupertino, CA (US); Mark 8,458,408 B2* 6/2013 Speightetal. 711/137
R. Greenstreet, Vancouver, CA (US) 2005/0155020 AL* 7/2005 DeWitt et al. ...occcconnc.. 717/130
(73) Assignee: ORACLE INTERNATIONAL OTHER PUBLICATIONS
CORPORATION, Redwood Shores,
CA (US) Zhuang, Xiaotong, “Reducing Cache Pollution via Dynamic Data
Prefetch Filtering”, IEEE Transactions Computers, vol. 56, No. 1,
(*) Notice: Subject to any disclaimer, the term of this Jan. 2007.
patent is extended or adjusted under 35
U.S.C. 154(b) by 109 days. * cited by examiner
(21) Appl. No.: 13/421,014
Primary Examiner — Gary Portka
(22) Filed: Mar. 15, 2012 (74) Attorney, Agent, or Firm — Park, Vaughan, Fleming &
(65) Prior Publication Data Dowler LLP; Mark Spiller
US 2013/0246708 A1l Sep. 19, 2013
(57) ABSTRACT
(51) Imt.ClL . . .
GOG6F 12/08 (2006.01) The disclosed embodiments provide a system that filters pre-
(52) US.CL fetch requests to reduce pre-fetching overhead. During opera-
CPC ... GOGF 12/0862 (2013.01); GOGF 12/0897 tion, the system executes an instruction that involves a
(2013.01); GO6F 2212/6026 (2013.01); YO2B memory reference that is directed to a cache line in a cache.
6071225 (2013.01) Upon determining that the memory reference will miss in the
(58) Field of Classification Search cache, the system determines whether the instruction fre-
None quently leads to cache misses. If so, the system issues a
See application file for complete search history. pre-fetch request for one or more additional cache lines.
Otherwise, no pre-fetch request is sent. Filtering pre-fetch
(56) References Cited requests based on instructions’ likelihood to miss reduces

U.S. PATENT DOCUMENTS

5,761,515 A *
7,487,297 B2 *
7,707,360 B2 *

6/1998 Bartonetal.c....... 717/158
2/2009 El-Essawy et al. .. 711/137
4/2010 Schmuck etal. 711/137

pre-fetching overhead while preserving the performance ben-
efits of pre-fetching.

18 Claims, 8 Drawing Sheets

LOAD

COMPUTING 220
DEVICE

200

REQUEST

PROCESSOR
CORE
204

MULTI-CORE
PROCESSOR
202

PIPELINE
206

PRE-FETCH
UNIT

PRE-FETCH

Fi

L1INSTR.
CACHE

)

)

CACHE
210 1

(Y)
[

L2cacHE |
212

208 T REQUEST(S)
/22
L1 DATA‘J

N
MISS
NOTIFICATION
222

CREY

INTERCONNECT

SHARED L3 CACHE
218

7,

- 4

PRE-FETCH
RESPONSE(S)
228

MEMORY
218

U.S. Patent Nov. 3, 2015 Sheet 1 of 8 US 9,176,878 B2

COMPUTING
DEVICE
100 PROCESSOR CORES MULTI-CORE PROCESSOR
= 104 102

CORE
PIPELINE
106

Fs \

L1 INSTR. L1 DATA
CACHE CACHE
108 110

¥ :

| INTERCONNECT 114 |

SHARED L3 CACHE
116

1
I
1
I
1
I
1
I
'
I
1
I
'
I
'
112 !
I
'
I
)
I
'
I
'
I
|
I
'
I
1

I
]
I
]
I
]
I
]
I
]
I
]
I
]
I
i L2 CACHE
]
I
]
I
]
I
]
|
]
I
]
I
'
l

MEMORY
118

FIG. 1

U.S. Patent Nov. 3, 2015 Sheet 2 of 8 US 9,176,878 B2

LOAD
REQUEST
COMPUTING 220
DEQ\(/)'SE PROCESSOR MULTI-CORE
CORE PROCESSOR
= 204 202
e — e e
I [X ¥] !
! CORE PRE-FETCH |
! PIPELINE UNIT PRE-FETCH i
| 206] 208 REQUEST(S) .
) 224
i F N 4 |
i L1INSTR. "é A%’T_'Té* 4 !
. CACHE 10 MISS |
| i NOTIFICATION i
i 222
| v v |
| ' !
| L2 CACHE | |
! 212 i
| I i
l L
| y \ ‘l : ,
i Y Ll !
i I INTERCONNECT | |
|
; T : |
]
' || sHareDL3cACHE |
! 216 i
| ‘I I 1
- | | E— $———— . it —— .
T
W.J
PRE-FETCH
RESPONSE(S)
928 MEMORY

218

FIG. 2

U.S. Patent Nov. 3, 2015 Sheet 3 of 8 US 9,176,878 B2

START

EXECUTE AN INSTRUCTION THAT INVOLVES
A MEMORY REFERENCE WHICH IS
DIRECTED TO A CACHE LINE IN A CACHE
300

DETERMINE THAT THE MEMORY REFERENCE
WILL MISS IN THE CACHE
310

DOES THE
INSTRUCTION FREQUENTLY
LEAD TO CACHE MISSES?
320

ISSUE A PRE-FETCH REQUEST FOR ONE OR
MORE SUBSEQUENT CACHE LINES
330

FIG. 3

U.S. Patent Nov. 3, 2015 Sheet 4 of 8 US 9,176,878 B2

COMPUTING
DEVICE
200 PROCESSOR CORE MULTI-CORE PROCESSOR
- 204 202

i_-_-_-_-_-_-_//_-___'_'___-___________-'l
]
i CORE PRE-FETCH voe |
! PIPELINE L%gr i
| 206 LOAD i
i . REQUEST
! £ LFDATA 220 i
L1 INSTR.
! CACSHE CACHE l \ SPECULATIVE i
210
| /,—RE%JZEST .
P v |
i ADDITIONAL !
. - SPECULATIVE
| L2 Czﬁ‘ZCHE I’If‘ REQUESTS !
i 424 |
1
! | |
I ‘k 1 . ----------------- . I
i v Il |
| T INTERCONNECT | |
| 1 ¢ i
] 2
| M -
! SHARED L3 CACHE |
| | 216 |
! |
| : .
o e #_$ _________________ _d
MEMORY
218

FIG. 4A

U.S. Patent Nov. 3, 2015 Sheet 5 of 8 US 9,176,878 B2

COMPUTING
DEVICE
200 PROCESSOR CORE MULTI-CORE PROCESSOR
- 204 202

CORE PRE-FETCH cee

PIPELINE UNIT
206 ~ 208 LOAD

— REQUEST
3 A

220
L1 DATA
CACHE
210

v v

L1 INSTR.

CACHE SPECULATIVE

. REQUEST
422

ADDITIONAL

— SPECULATIVE

REQUESTS
424

L2 CACHE

1
|
1
|
1
|
]
|
]
|
]
|
]
|
]
! 212
|
]
|
]
|
]
|
]
|
]
|
]
|

INTERCONNECT |

SHARED L3 CACHE
216

—_

MEMORY
218

FIG. 4B

U.S. Patent Nov. 3, 2015 Sheet 6 of 8 US 9,176,878 B2

START

RECEIVE A MEMORY REFERENCE DIRECTED
TO A CACHE LINE IN THE CACHE
500

WHILE DETERMINING WHETHER THE CACHE
LINE IS AVAILABLE IN THE CACHE,
DETERMINE WHETHER THE MEMORY
REFERENCE IS LIKELY TO MISS IN THE
CACHE
510

IF THE MEMORY REFERENCE IS LIKELY TO
MISS, SIMULTANEOUSLY SEND A
SPECULATIVE REQUEST FOR THE CACHE
LINE TO A LOWER LEVEL OF THE MULTI-
LEVEL HIERARCHY
520

FIG. 5

U.S. Patent Nov. 3, 2015 Sheet 7 of 8 US 9,176,878 B2

COMPUTING ENVIRONMENT 600

=

USER CLIENT SERVER
620 610 630

E—&

\\\—/\. ™
USER CLIENT ™ SERVER
621 611 650

n

DATABASE
670

i

CLIENT i SERVER
612 g 640
APPLIANCE
690
DEVICES
680

FIG. 6

U.S. Patent

Nov. 3, 2015 Sheet 8 of 8

US 9,176,878 B2

COMPUTING DEVICE 700

PROCESSOR
702

EXECUTING
MECHANISM

710

DETERMINING
MECHANISM
712

L1 CACHE

706

SPECULATION
MECHANISM

714

L2 CACHE

708

MEMORY
704

FIG. 7

US 9,176,878 B2

1

FILTERING PRE-FETCH REQUESTS TO
REDUCE PRE-FETCHING OVERHEAD

BACKGROUND

1. Field of the Invention

This disclosure generally relates to techniques for reducing
pre-fetching overhead for processors in computer systems.
More specifically, this disclosure relates to techniques for
filtering pre-fetch requests to reduce cache and memory pre-
fetching overhead.

2. Related Art

To achieve high instruction throughput rates, the memory
subsystem of a processor typically includes multiple levels of
cache memories. Accesses to such cache memories generally
operate as follows. During execution, a processor may
execute an instruction that references a memory location. If
the referenced memory location is not available in a level one
(L1) cache, a cache miss causes the [.1 cache to send a
corresponding request to a level two (1.2) cache. Next, if the
referenced memory location is also not available in the 1.2
cache, additional requests may need to be sent to lower levels
of the processor’s memory hierarchy.

In a typical high-performance processor, off-chip memory
latency (e.g., to a DRAM memory) is often an order of mag-
nitude or more larger than on-chip memory latency. Pre-
fetching techniques try to hide this latency by predicting
which cache lines might be needed in the future and preemp-
tively pre-fetching those cache lines. For instance, pre-fetch-
ing operations may be initiated on a cache miss. For example,
when a load instruction misses in the cache, the pre-fetch unit
can predict the next few lines that might be needed, and can
issue pre-fetches for those lines.

Unfortunately, while pre-fetching techniques generally
reduce cache miss delays, they also involve additional over-
head. Not all cache lines that are pre-fetched will be used, and
such superfluous cache line reads consume memory band-
width and can cause unnecessary energy consumption in the
off-chip memory, the on-chip caches, and the memory net-
work. Hence, what is needed are techniques for pre-fetching
cache lines without the above-described problems.

SUMMARY

The disclosed embodiments provide a system that filters
pre-fetch requests to reduce pre-fetching overhead. During
operation, the system executes an instruction that involves a
memory reference that is directed to a cache line in a cache.
Upon determining that the memory reference will miss in the
cache, the system determines whether the instruction fre-
quently leads to cache misses. If so, the system issues a
pre-fetch request for one or more additional cache lines.
Otherwise, no pre-fetch request is sent. Filtering pre-fetch
requests based on instructions’ likelihood to miss reduces
pre-fetching overhead while preserving the performance ben-
efits of pre-fetching.

In some embodiments, issuing the pre-fetch request
involves detecting an access pattern for additional memory
references that follow the instruction.

In some embodiments, the system receives an indication
(e.g., in the memory reference instruction) that indicates that
the cache line is likely to miss in the cache. In other cases, the
system determines that the cache line is likely to miss in the
cache by using tracking data that is stored during the execu-
tion of a program.

10

15

20

25

30

35

40

45

50

55

60

65

2

In some embodiments, the system profiles a program
executing on a processor to identify program instructions that
are likely to cause cache misses.

The system analyzes this profile information to identify
such instructions, and then modifies these program instruc-
tions so that they can be easily identified during execution.
For instance, the system may mark a field in the program
instruction that indicates that the instruction is likely to cause
cache misses and should trigger a pre-fetch request for addi-
tional cache lines.

In some embodiments, the system uses one or more
counters to track previous hits and misses for a memory
reference. The system subsequently uses the values tracked in
these counters to determine whether the memory reference
frequently leads to cache misses. Such counters may include
a variety of structures including, but not limited to, one or
more of the following: a hit counter; a miss counter; a counter
that tracks the number of times an instruction is executed; a
“saturating” counter that is incremented on hits and decre-
mented on misses; and/or an asymmetric counter that weighs
hits and misses differently.

In some embodiments, the system compares a calculated
value that is derived from the tracked hit and miss information
with a threshold to determine whether or not to send a specu-
lative request.

In some embodiments, the cache is part of a multi-level
memory hierarchy, and in addition to sending a pre-fetch
request, the system also sends a speculative request to a lower
level of the multi-level memory hierarchy. More specifically,
upon detecting an instruction that frequently leads to cache
misses, the system sends a speculative request for the cache
line to a lower level of the multi-level memory hierarchy prior
to completing a full lookup operation in the initial cache.
Preemptively sending the speculative request facilitates
reducing the cache miss delay when the cache line is not
available in the initial cache.

In some embodiments, the instruction is a load instruction.

In some embodiments, the system determines a predicted
performance penalty associated with cache misses for the
instruction, and determines whether to issue the pre-fetch
request based on this predicted performance penalty.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 illustrates an exemplary computing device that
includes a multi-core processor with a set of structures for
caching memory data in accordance with an embodiment.

FIG. 2 illustrates an exemplary pre-fetch request operation
in a computing device with a multi-core processor that filters
pre-fetch requests to reduce pre-fetching overhead in accor-
dance with an embodiment.

FIG. 3 presents a flow chart illustrating the process of
filtering pre-fetch requests to reduce pre-fetching overhead in
accordance with an embodiment.

FIG. 4A illustrates an exemplary speculative request
operation in a multi-core processor that uses speculative
cache requests to reduce cache miss delays in accordance
with an embodiment.

FIG. 4B illustrates an alternative exemplary speculative
request operation in a multi-core processor that uses specu-
lative cache requests to reduce cache miss delays in accor-
dance with an embodiment.

FIG. 5 presents a flow chart illustrating the process of using
speculative cache requests to reduce cache miss delays in
accordance with an embodiment.

FIG. 6 illustrates a computing environment in accordance
with an embodiment.

US 9,176,878 B2

3

FIG. 7 illustrates a computing device in accordance with an
embodiment.

DETAILED DESCRIPTION

The following description is presented to enable any per-
son skilled in the art to make and use the invention, and is
provided in the context of a particular application and its
requirements. Various modifications to the disclosed embodi-
ments will be readily apparent to those skilled in the art, and
the general principles defined herein may be applied to other
embodiments and applications without departing from the
spirit and scope of the present invention. Thus, the present
invention is not limited to the embodiments shown, but is to
be accorded the widest scope consistent with the principles
and features disclosed herein.

The data structures and code described in this detailed
description are typically stored on a non-transitory computer-
readable storage medium, which may be any device or non-
transitory medium that can store code and/or data for use by
a computer system. The non-transitory computer-readable
storage medium includes, but is not limited to, volatile
memory, non-volatile memory, magnetic and optical storage
devices such as disk drives, magnetic tape, CDs (compact
discs), DVDs (digital versatile discs or digital video discs), or
other media capable of storing code and/or data now known or
later developed.

The methods and processes described in the detailed
description section can be embodied as code and/or data,
which can be stored in a non-transitory computer-readable
storage medium as described above. When a computer system
reads and executes the code and/or data stored on the non-
transitory computer-readable storage medium, the computer
system performs the methods and processes embodied as data
structures and code and stored within the non-transitory com-
puter-readable storage medium.

Furthermore, the methods and processes described below
can be included in hardware modules. For example, the hard-
ware modules can include, but are not limited to, application-
specific integrated circuit (ASIC) chips, a full-custom imple-
mentation as part of an integrated circuit (or another type of
hardware implementation on an integrated circuit), field-pro-
grammable gate arrays (FPGAs), a dedicated or shared pro-
cessor that executes a particular software module or a piece of
code at a particular time, and/or other programmable-logic
devices now known or later developed. When the hardware
modules are activated, the hardware modules perform the
methods and processes included within the hardware mod-
ules.

Caching and Pre-fetching in Multi-Level Memory Hierar-
chies

A modern high-performance processor typically devotes
large areas of semiconductor real estate to specialized hard-
ware structures that cache frequently accessed data and speed
up address translations. For instance, such specialized hard-
ware structures may include multiple levels of SRAM (or
DRAM) caches and multiple levels of translation lookaside
buffers (TLBs), which cache page-table translations.

For example, FIG. 1 illustrates an exemplary computing
device 100 that includes a multi-core processor 102 with a set
of structures for caching data. Multi-core processor 102 can
include one or more processor cores 104, each of which
includes one or more processor core pipelines 106, an [.1
instruction cache 108 and an L1 data cache 110. Each set of
L1 caches (108-110) is backed by an [.2 cache 112. Processor
cores 104 use interconnect 114 to access a shared L3 cache
116, which can load data from memory 118. Note that while

25

35

40

45

50

4

FIG. 1 illustrates a multi-core processor architecture, the
disclosed techniques can also be applied to single-core pro-
cessor architectures.

When memory is referenced by an instruction executing in
the core (e.g., a store instruction that is storing data in a cache,
oraload or pre-fetch instruction loading data from the cache),
the L1 data cache 110 (also referred to as the D$) is checked
first. If the data is found in L1 data cache 110, it is loaded into
the core pipeline 106. If the data is not found, a cache miss is
signaled, and .2 cache 112 is accessed. If .2 cache 112 also
misses, .3 cache 116 is accessed. If L3 cache 116 misses as
well, then the data is fetched from the off-chip memory 118.
Note that the memory hierarchy illustrated in FIG. 1 is exem-
plary, and different implementations may have additional
cache levels as well as additional cache and TLB structures
(not illustrated) that are shared across multiple processor
cores. Also, inter-processor interconnect 114 may be placed
at other (or multiple) levels of the memory hierarchy (e.g.,
other than and/or in addition to at the 1.2/.3 boundary), and
some multiprocessors may include a hierarchy of such inter-
connects. For instance, in an exemplary multiprocessor, each
processor core includes its own L1 caches, a first set of inter-
connect allows a “cluster” of two or more such processor
cores to share an L2 cache, a second set of interconnect allows
several such clusters to share an L3 cache, and additional
interconnect between chips combines such grouped clusters
into a larger multiprocessor.

In general, smaller caches located closer to the core pipe-
line (e.g., L1 caches) provide faster access times and consume
less power than the larger caches (e.g., the L2 and L3 caches).
For example, in some modern processors with three-level
cache hierarchies (e.g., multi-core processor 102 illustrated
in FIG. 1), data in the L1 caches can be accessed in a few
processor cycles, while an [.2 access takes on the order of
10-20cycles, an 1.3 access generally takes over 20 cycles, and
a memory access may involve 100s of cycles. Caches are
typically sized in such a way that for most applications the [.1
cache’s hit rate is well over 50%, thereby reducing contention
and power use in the lower levels of the memory hierarchy.
However, memory references that cause cascading misses
across every level of the memory hierarchy, while relatively
infrequent, typically incur a large latency penalty.

Pre-fetching techniques try to hide the latency of cache
misses by predicting which cache lines might be needed in the
future and preemptively pre-fetching those cache lines. For
instance, a compiler may identify data that will be needed in
the future and can insert pre-fetch instructions into the pro-
gram that pre-load the cache hierarchy with the needed data in
advance, thereby averting a cache miss and associated pipe-
line stalls. Alternatively, a hardware pre-fetching unit may
initiate pre-fetching operations on a cache miss. For example,
when a load misses in the cache, the pre-fetch unit can predict
that (based on spatial locality) the next few lines will likely be
needed as well, and can issue pre-fetches for those lines.

For example, consider executing the pseudo-code of Table
1 on an in-order processor that stalls on a cache miss. In a
situation where each array element occupies an entire cache
line, in the worst case each load might result in a cache miss,
thereby leading to long memory latencies. Some of this wait-
ing time can be avoided by pre-fetching array elements upon
encountering a load miss. For instance, if a given array [i]
access misses, the processor may issue pre-fetch requests for
array [i+1], array [i+2], array [i+3], and array [i+4]. Hence, if
array [0] misses, when the loop reaches array elements 1, 2, 3,
and 4, they will have already been pre-fetched, and will
already reside in an on-chip cache. This style of pre-fetching,
where the next n cache lines are pre-fetched on a cache miss,

US 9,176,878 B2

5

is called “next-n-lines pre-fetching.” A common value fornis
4. Note that some pre-fetching techniques only pre-fetch data
up to the lowest on-chip cache level (e.g., the on-chip cache
farthest from the processor core), while other techniques pre-
fetch data to intermediate cache levels or all the way up to the
cache level closest to the processor core. Furthermore, some
sophisticated pre-fetching techniques also track accesses in
an attempt to detect strides or patterns in instruction loads.
For example, pre-fetching units may be configured to detect
access patterns that skip every second cache line, and in
response only generate pre-fetch requests for every other
cache line.

TABLE 1
fori=0..100 do:

load array[i]
sum = sum + array[i]

While, as described above, pre-fetching techniques can
sometimes be used to avoid a subset of cache misses, pre-
fetching techniques can also involve disadvantages. Because
not all cache lines that are pre-fetched are used, pre-fetching
can lead to higher energy consumption. For instance, in the
previous example of Table 1, if array [100] leads to a miss, the
hardware pre-fetching unit may pre-fetch array [101], .. .,
array [104], which are then not actually used. Loading super-
fluous cache lines can lead to higher energy consumption in
the off-chip memory, in the on-chip caches, and in the
memory network. Hence, attempts to improve performance
often need to consider trade-offs between energy consump-
tion and the aggressiveness of pre-fetching.

Pre-fetching efforts may also “pollute” the cache hierarchy
by displacing useful data, thereby potentially causing addi-
tional unexpected misses. Typically, when a cache line is
loaded into an on-chip cache, some other cache line needs to
be “evicted” to make space for the new line. Predicting which
cache lines are not useful anymore is difficult, so sometimes
the cache may evict a cache line that will then be accessed
again almost immediately. In this situation, the pre-fetch
causes another cache miss, and thus results in performance
degradation.

Note that while pre-fetching is typically very effective for
single-threaded, desktop workloads, pre-fetching techniques
are generally less effective for multi-threaded, commercial
workloads. Commercial workloads are characterized as hav-
ing a large number of threads and/or processes that can
exploit the parallelism of commercial (multi-threaded, multi-
core) architectures. First, while low memory locality in com-
mercial workloads results in high cache-miss rates, much of
the performance loss of such misses can be mitigated by
parallelism (e.g., much of the miss latency for one thread will
hopefully be hidden by scheduling another thread). Second,
in commercial workloads the interleaved execution of threads
makes predicting when a cache line will actually be needed
much more difficult; if data is pre-fetched too early, it might
be evicted before it is used, while if the data is pre-fetched too
late the impact of the cache miss delay is unmitigated. Third,
because caches are shared among all threads, overly aggres-
sive pre-fetching has a higher likelihood of evicting cache
lines that will be needed by other threads in a short timeframe.
Fourth, detecting patterns in the cache miss stream becomes
more difficult, because the stream of misses come from dif-
ferent, uncorrelated threads. All of these issues negatively
affect the performance of pre-fetching.

Thus, while pre-fetching techniques can help reduce cache
misses in some situations, they also have some potential

10

15

20

25

30

35

40

45

50

55

60

65

6

drawbacks and incur additional overhead. For instance, simu-
lations of 8-threaded commercial workload benchmarks
show that next-4-lines pre-fetching can lead to over 50%
more loads (compared to no pre-fetching) and can at times
even reduce performance as measured in instructions-per-
cycle (IPC). Furthermore, estimating that caches account for
10%-20% of total processor power, increasing the dynamic
power consumed by caches can lead to a substantial increase
in the total power of a modern power-constrained processor.

Embodiments of the present invention seek to improve the
efficiency of pre-fetching efforts by categorizing load instruc-
tions based on their past miss rates, and then using these
categorizations to filter pre-fetch requests in a manner that
reduces the power and bandwidth overhead associated with
pre-fetching while preserving performance. Furthermore, in
situations where additional cache traffic can be tolerated, the
described techniques can further improve performance by
using these categorizations to selectively issue speculative
loads to one or more additional levels of the memory hierar-
chy.

Filtering Pre-Fetch Requests

While the actual set of memory references generated by a
program are application-specific, a small set of instructions
typically account for a high percentage of cache misses. For
instance, in many applications most load instructions either
miss infrequently in the [.1 cache (e.g., less than 10% oftimes
they are issued), or almost always miss in the L1 cache (e.g.,
over 90% of times they are issued). Some embodiments of the
present invention identify miss-prone load instructions, and
then reduce pre-fetching overhead by filtering pre-fetches
based on a load’s likelihood to miss. For instance, upon
encountering a cache miss, a processor first checks if the
particular load instruction being executed frequently leads to
misses. If so, the processor issues pre-fetch requests for the
next few predicted cache lines. For loads that seldom miss, the
processor assumes that the current miss is an outlier, and does
not issue any pre-fetch requests. Selective pre-fetching can
substantially reduce the overhead of pre-fetching while pre-
serving many of the performance benefits of unfiltered pre-
fetching.

In some embodiments, the processor tracks the number of
times a load instruction hits or misses in the first-level cache.
This information can then be used when executing the
instruction to determine whether a pre-fetch request should
be sent. For instance, the processor may include hardware
counters that track the hit and miss rates for each load instruc-
tion (e.g., by uniquely tracking each load instruction and its
respective counter based on the load instruction’s program
counter). Such counters may take a range of forms including,
but not limited to, one or more of the following: separate hit
and miss counters; a single (per-instruction) “saturating”
counter that is incremented on hits and decremented on
misses (Where, when the counter reaches a maximum value, it
remains at that maximum value until a miss is encountered);
and/or an asymmetric counter that weighs hits and misses
differently (e.g., a counter that is incremented by a value n
whenever a load hits in the cache, and is decremented by a
value m whenever the load instruction misses in the cache).
Note that hit and miss rates can also be tracked using the
combination of a counter that tracks the number of times an
instruction is executed and either a hit or a miss counter. For
example, if a set of counters tracks the number of executions
and the number of misses for a program instruction, the
system can calculate the number of hits for that program
instruction by subtracting the number of misses from the
number of executions.

US 9,176,878 B2

7

The number of counters needed to track hit and miss rates
for multiple load instructions may vary depending on the
application being executed. For example, as with branch pre-
dictors, a processor may be provisioned with a fixed set of
counters that can be used to track a limited moving window of
recent load instructions. Because of spatial and temporal
locality, even a small number of counters may suffice to
reduce pre-fetch overhead. In some embodiments, counters
may be configured to work upon a per-cache-line granularity
instead of a per-instruction granularity. For instance, the sys-
tem may allocate a 3-bit counter per instruction cache line;
having a per-cache-line counter reduces the amount of
counters needed, but may lead to some inaccurate predictions
because different load instructions that access different cache
lines may share the same counter.

In some embodiments, the system may use an instruction
miss list (IML), which is a small table of recent loads that
missed in a cache. Entries in the IML record the number of
times a load has been executed and the number of cache
misses that have occurred when executing the load. Instruc-
tions are added to the IML on misses, and evicted from the
IML using an LRU (least-recently-used) strategy. For
instance, in some embodiments, when the IML becomes full,
the load instruction with the lowest miss ratio may be evicted.
Thus, a limited set of tracking resources can be focused on the
most-likely-to-miss load instructions. Note that IMLs may
vary in size, and that the threshold used to determine whether
an instruction is considered likely-to-miss may be adjustable.

Note thatin all of the above-described tracking techniques,
the system may use a range of techniques when encountering
anew instruction that has not been tracked. For instance, upon
encountering a new load instruction that has resulted in a
cache miss but has not been assigned a counter, the system
may perform one or more of the following: issue one or more
pre-fetch requests in an attempt to minimize possible load
delay; not issue any pre-fetch requests for untracked load
instructions until sufficient tracking data has been gathered;
and/or use aggregated data from previous tracked and/or
untracked load instructions to determine whether or not to
issue one or more pre-fetch requests upon encountering a
cache miss for the untracked load instruction.

In some embodiments, the system may perform a range of
calculations based on the tracked values. For instance, the
system may compute the difference between a hit counter and
amiss counter when determining whether a load instruction is
likely to miss. Alternatively, the system may perform more
complex calculations when determining whether to send pre-
fetch requests. For example, the system may calculate the
ratio of misses to hits for a given load instruction that has led
to a cache miss, and then compare this value to a range of
thresholds to determine a suitable course of action. In one
specific example, if the calculated value for the ratio of misses
to hits is below a first threshold (e.g., 0.5), the system does not
send any pre-fetch requests. If the value is between the first
threshold and a second threshold (e.g., 1.0 for the ratio of
misses to hits), the system may only send pre-fetch requests if
the memory network utilization is low. However, if the value
is above the second threshold, the system sends pre-fetch
requests regardless of the memory network utilization.

In some embodiments, the pre-fetching system tracks
instruction hits and misses for multiple levels of the memory
hierarchy (e.g., the .2 cache, 1.3 cache, etc), and also uses that
information to decide whether to issue pre-fetch requests. The
pre-fetching system may also decide which cache level to
pre-fetch into based on memory network utilization and/or
counter values. For instance, in some situations, pre-fetching
requests may result in data being brought into only the lowest-

10

15

20

25

30

35

40

45

50

55

60

65

8

level on-chip cache (e.g., an [.3 cache). While such pre-
fetches do not completely avoid higher-level cache misses,
they can substantially reduce the miss latency penalty (e.g.,
the cache miss latency for data accessed from an [.3 cache is
much less than that of a full memory access). In other situa-
tions, pre-fetched data may be loaded into multiple levels of
the cache hierarchy. In some embodiments, such targeting
decisions may be based on the tracked hit/miss likelihood for
the current memory reference instruction and/or other tracked
metrics.

FIG. 2 illustrates an exemplary pre-fetch request operation
in a computing device 200 with a multi-core processor 202
that filters pre-fetch requests to reduce pre-fetching overhead.
Processor core 204 includes a set of one or more hardware
counters (not shown) that are used to track instruction hit and
miss rates for the memory hierarchy. More specifically, in this
example, a hit counter is incremented every time a load
instruction hits in the L1 cache, and a miss counter is incre-
mented every time a load instruction misses in the L1 cache.
Note that instructions and their respective counters can be
uniquely identified by the instruction’s program counter.

During operation, processor core 204 issues a load instruc-
tion for an address a in core pipeline 206 (e.g., load request
220). If the load hits in L1 data cache 210, processor core 204
updates the hit counter appropriately. If load request 220
misses in 1.1 data cache 210, processor core 204 updates the
miss counter, and a hardware decision circuit determines
whether to issue a pre-fetch request. For instance, upon
encountering the miss, [.1 data cache 210 may send a miss
notification 222 to a pre-fetch unit 208 that then checks the
difference between the miss counter and the hit counter. If the
difference between the miss counter and the hit counter is
greater than some threshold t,, pre-fetch unit 208 assumes
that subsequent loads will also miss, and issues one or more
pre-fetch requests 224 for additional cache lines to memory
218. Pre-fetch unit 208 may also include logic that determines
the cache lines to be pre-fetched. For example, based on
previous access trends pre-fetch unit 208 may use either a
next-4-lines pre-fetch technique or determine an alternative
pre-fetch technique (and/or interval) using a more sophisti-
cated stride or pattern detector.

Note that while the above description discloses calculating
the difference between the two counters, the system may
instead (or additionally) use a ratio or some other function of
the tracked values to determine whether to send pre-fetch
requests. Note also that core pipeline 206 may also track hit
and miss values for additional levels of the memory hierarchy
(e.g., for 1.2 cache 212 and shared .3 cache 216) as well as
memory network utilization information, and may then use
such tracked data to determine which cache level pre-fetched
data should be loaded into. For example, pre-fetch unit 208
may specify the target cache level in pre-fetch request 224, so
that pre-fetch response(s) 226 sent from memory 218 are
loaded into the specified target caches.

In some embodiments, values tracked in the counters are
used by a hardware decision circuit to determine whether
pre-fetch requests should be sent when a load instruction
issues and misses. In alternative embodiments, the system
may use hints and analyses provided by software techniques
to determine when to issue pre-fetch requests. For instance,
the system may use a compiler to perform program analysis to
identify load instructions that are likely to cause cache
misses. The compiler can mark such instructions during com-
pilation (e.g., using a one bit marker in an instruction field or
a special instruction opcode). A processor detecting such an
instruction can take this recommendation and issue one or
more pre-fetch requests in response to a cache miss, or can

US 9,176,878 B2

9

view the recommendation as an additional factor in its own
internal decision-making process (e.g., focusing limited
hardware tracking resources on load instructions that have
been marked by the compiler). Alternatively, in some
embodiments, the compiler, upon determining a frequently
missing load instruction, may also already add additional
explicit pre-fetch instructions during compilation.

Note that software techniques can also be extended to make
use of the hardware tracking data described above. For
instance, the system may first execute a program for profiling
purposes, and can store the hit and miss data tracked in
hardware counters. This profiling data can then be fed back
into the compiler, which analyzes the profile data to more
accurately identify likely cache misses and outputs an
updated program executable that includes marked instruc-
tions.

In some embodiments, the system may also use tracking
techniques to track the performance penalties associated with
cache misses. For instance, on an out-of-order processor, all
cache misses might not be equally detrimental. For example,
some cache misses may be inconsequential because the pro-
cessor is able to find other instructions that can execute while
waiting for data to be delivered from lower levels of the
memory hierarchy; other cache misses could cause the pro-
cessor to stall completely. Additional tracking infrastructure
could, instead of (or in addition to) tracking cache hits and
misses, also track whether instructions were executed without
performance penalties (e.g., the instruction hit in the cache or
the processor was able to continue executing without stalling
while the cache miss was being processed) or caused perfor-
mance penalties (e.g., lead to stalls). In some embodiments,
the combination of miss-rate and performance-degradation
tracking information could be used to determine which load
instructions merit pre-fetching. For example, in some con-
figurations pre-fetch requests may only be sent for instruc-
tions that frequently lead to cache misses that are typically
associated with significant performance penalties. Note that
such additional tracking capabilities may involve adding
additional hardware structures into the processor that facili-
tate determining which load instructions lead to critical (per-
formance-impacting) cache misses.

In some embodiments, cache lines that are loaded into a
cache as a result of a pre-fetch request are tagged. This tag-
ging allows pre-fetched cache lines to be identified during
subsequent accesses, and prevents hit and miss statistics from
being erroneously influenced by pre-fetched data. For
instance, a pre-fetch unit may be configured to not increment
a hit counter when a load instruction hits on a pre-fetched
cache line. Cache policies may also weigh tagged cache lines
differently when choosing lines to discard from a cache.

In some embodiments, tagging may also be used to identify
the last cache line that was pre-fetched by a previous set of
pre-fetch requests (e.g., in next-4-lines pre-fetching, the last
pre-fetched cache line would be the fourth cache line). In
these embodiments, the processor can issue additional pre-
fetch requests when the tagged cache line is accessed, thereby
ensuring that the next set of data has been loaded by the time
it is needed.

FIG. 3 presents a flow chart that illustrates the process of
filtering pre-fetch requests to reduce pre-fetching overhead.
During operation, the system executes an instruction that
involves a memory reference which is directed to a cache line
in a cache (operation 300). Upon determining that the
memory reference will miss in the cache (operation 310), the
system determines whether the instruction frequently leads to
cache misses (operation 320). If so, the system issues a pre-
fetch request for one or more subsequent cache lines (opera-

10

15

20

25

30

35

40

45

50

55

60

65

10

tion 330). Otherwise, the process ends. Filtering pre-fetch
requests based on instructions’ likelihood to miss reduces
pre-fetching overhead.

Note that the described techniques store the past hit/miss
behavior of an instruction instead of storing the past useful-
ness of a pre-fetch request, and then checking whether a
particular pre-fetch address was previously useful when issu-
ing a subsequent pre-fetch for that address. Techniques which
filter based on specific pre-fetch history require changes to
data load mechanisms, as the system needs to tag each pre-
fetched cache line and then track whether pre-fetched cache
lines were actually used. In contrast, the disclosed embodi-
ments instead track the likelihood-to-miss of memory refer-
ences, and do not require tracking which pre-fetched cache
lines are used.

Sending Speculative Cache Requests

In some embodiments, selective pre-fetching techniques
can be combined with techniques that seek to reduce the
cache miss delays associated with cascading misses by simul-
taneously sending additional speculative requests to lower
levels of the memory hierarchy.

A multi-level cache hierarchy is typically structured such
that a majority of memory references hit in the upper levels of
the cache hierarchy. (Note that in this document “lower” in
the memory hierarchy refers to caches closer to the main
memory, and the highest level of the memory hierarchy is the
L1 cache). However, as described above, a small set of
instructions typically account for a high percentage of cache
misses, and the memory references that miss can involve
substantial additional delay. Instructions which miss fre-
quently in an L.1 cache are also likely to miss in lower levels
of'the memory hierarchy, and thus have a very high associated
miss delay. Some embodiments of the present invention reuse
the tracked miss data (described above) used for pre-fetch
request filtering to also initiate preemptive, speculative
fetches that reduce associated cache miss delays.

Some embodiments of the present invention identify
instructions that are likely to miss in one or more cache levels,
and then simultaneously issue speculative requests to one or
more levels of the memory hierarchy to reduce cache miss
latency. Issuing a speculative request to a lower level of the
memory hierarchy can reduce the cascading miss effect by
expediting the loading of desired data into lower levels of the
memory hierarchy. For instance, when executing a load
instruction, a processor can use the gathered data to make an
educated guess as to whether the load is likely to hit or miss in
the L1 cache. If the instruction is likely to miss, load requests
can besent to both the [.1 and [.2 cache hierarchies in parallel,
thereby immediately initiating the loading of the needed data
from the [.2 cache into the [.1 cache (e.g., instead of waiting
until after the [L1 cache has missed to send a request to the 1.2
cache). Note that a range of tracking and profiling techniques
(such as those described above) may be used to make such
educated guesses. Furthermore, aspects of these techniques
may be incorporated into a processor, one or more compo-
nents of the memory hierarchy, and/or a compiler.

In some embodiments, the speculation system tracks the
number of times a memory access instruction (e.g., a load,
pre-fetch, or store instruction) hits or misses for a cache level.
This information can then be used when executing the
instruction to determine whether a speculative request should
be sent. For instance, the processor and/or components of the
memory hierarchy may include hardware counters (as
described above) that track instruction hit and miss rates for
each level of the memory hierarchy (e.g., for an .1 cache, an
L2 cache, an L3 cache, and main memory).

US 9,176,878 B2

11

Note also that, as described for pre-fetches above, the
system may use a range of techniques when encountering a
new instruction that has not been tracked. For instance, upon
encountering a new load instruction that has not been
assigned a counter, the system may perform one or more of
the following: issue a speculative load in an attempt to mini-
mize possible load delay; not issue a speculative load for
untracked instructions; and/or use aggregated data from pre-
vious tracked and/or untracked instructions to determine
whether or not to issue a speculative load for the untracked
instruction. Furthermore, as also described above, the system
may perform a range of calculations based on the tracked
values and a range of thresholds.

In some embodiments, the system can track hit and miss
values for multiple cache levels, and send speculative
requests to multiple cache levels based on the hit and miss
counters for the different cache levels. For instance, if
counters for both an [.1 and an .2 cache indicate likely
misses, the system may simultaneously send load requests to
the L1, L.2 and L3 caches. Speculative requests can also be
issued to main memory as well if the counters indicate a miss
in all cache levels. In some embodiments, the system may
speculatively bypass some caches. For example, if the system
predicts a very high likelihood of a miss in an L1 cache, the
system may bypass the L1 cache and initially only send a
speculative request to the L2 cache (e.g., to reduce power
consumption in the L1 cache).

FIG. 4A illustrates an exemplary speculative request
operation in the computing device 200 of FIG. 2. As described
previously, processor core 204 includes a set of two hardware
counters (not shown) that are used to track instruction hit and
miss rates for the memory hierarchy. During operation, pro-
cessor core 204 issues a load instruction for an address a in
core pipeline 206. Core pipeline 206 checks the counters for
this load instruction; if this is the first time the load instruction
is executed, core pipeline 206 initializes the counters to a
known value. If the difference between the miss counter and
the hit counter is smaller than some threshold t,, core pipeline
206 assumes that the load will hit again in .1 data cache 210,
and the load proceeds normally by sending a load request 220
to L1 data cache 210 (i.e., no speculative request is sent to 1.2
cache 212). However, if the difference between the miss
counter and the hit counter is greater than some threshold t,,
core pipeline 206 assumes that the load will miss again in [.1
data cache 210, and simultaneously sends both a load request
220 to L1 data cache 210 and a speculative load request 422
for address a to L2 cache 212. Note that, while the above
description discloses calculating the difference between the
two counters, the system may instead (or additionally) use a
ratio or some other function of the tracked values to determine
whether to send speculative requests.

The request 422 sent to L2 cache 212 is considered specu-
lative because L1 data cache 210 may actually already con-
tain the data at address a, in which case speculative request
422 is spurious. If speculative request 422 was sent and load
request 220 hits in [L1 data cache 210, then speculative request
422 can be aborted or the returned data can be discarded. If
load request 220 misses and no speculative request 422 was
sent, a subsequent (now non-speculative) request will need to
be sent to .2 cache 212 for address a. Once the requested data
from address a is received, core pipeline 206 can update the
hardware counters. If address a was found in L1 data cache
210, core pipeline 206 updates the hit counter for the load
instruction; otherwise, the miss counter is updated.

Note that core pipeline 206 may also track hit and miss
values for additional levels of the memory hierarchy (e.g., for
L2 cache 212 and shared L3 cache 216), and may send addi-

20

25

30

40

45

12

tional speculative requests 424 to lower levels of the memory
hierarchy if calculations indicate that lower levels of the
cache hierarchy may also miss.

Note also that, while FIG. 4A illustrates a scenario where
core pipeline 206 maintains the counters and initiates specu-
lative requests 422-424, other hardware structures may
implement the tracking functionality and initiate speculative
requests. For instance, in some embodiments one or more
components of the memory hierarchy may initiate speculative
requests (as illustrated in FIG. 4B, where [.1 data cache 210
performs the tracking operations and issues speculative
requests 422-424 to lower levels of the memory hierarchy).
Some such components may not have access to the same set
of information available at the processor level (e.g., may not
be able to perform tracking on a specific per-instruction basis,
unless such information is included in the request sent to the
cache), but may still be able to perform tracking based on
other information (e.g., by tracking the hit and miss rates for
memory addresses being accessed instead of for instruc-
tions).

FIG. 5 presents a flow chart that illustrates the process of
using speculative cache requests to reduce cache miss delays
for a cache in a multi-level memory hierarchy. During opera-
tion, the system receives a memory reference which is
directed to a cache line in the cache (operation 500). While
determining whether the cache line is available in the cache
(but prior to completing a full cache lookup), the system
determines whether the memory reference is likely to miss in
the cache (operation 510), and if so, simultaneously sends a
speculative request for the cache line to a lower level of the
multi-level memory hierarchy (operation 520). Preemptively
sending the speculative request reduces the cache miss delay
when the cache line is not available in the cache.

While the preceding examples described a hardware deci-
sion circuit that uses counters, other techniques may maintain
other data fields (e.g., arrays of hashed cache tag values, etc.)
that facilitate quickly determining whether a cache is likely to
miss for a given memory reference. Such techniques do not
need to be 100% correct in speculatively identifying cascad-
ing misses to improve performance; however, to provide per-
formance benefits they will typically need to: (1) be suffi-
ciently accurate to improve performance and justify any
additional hardware complexity and overheads (e.g., addi-
tional associated power consumption); and (2) reach a specu-
lative decision before the full process of conclusively deter-
mining whether the memory process hits or misses in the
cache completes.

As mentioned above in the context of pre-fetching, the
system may use a range of techniques to decide whether to
send a speculative request. In some embodiments, the system
may use hints and analyses provided by software techniques
(and/or a combination of hardware and software techniques)
to determine when to issue speculative requests.

The actual performance improvements associated with
speculative requests to lower levels of the memory hierarchy
may vary (e.g., depending, in part, on cache and processor
architecture and design goals). For instance, as described
above in the context of pre-fetching overhead, power con-
sumption is an increasingly important design factor (as
opposed to only execution speed), and attempts to reduce
power consumption can dramatically change cache organiza-
tion. Traditional lookup techniques performed cache tag and
array lookups in parallel, but cache array lookups may con-
sume substantial power.

Hence, some modern caches perform the tag lookup first,
and then only perform an array lookup when a tag match
indicates that the data is actually available in the cache (and,

US 9,176,878 B2

13

for a multi-way cache, pinpoints the specific cache way con-
taining the desired data, thereby sparing the cache from need-
lessly having to power up the circuits for all of the available
cache ways). The benefits of techniques that use speculative
requests (if sufficiently accurate) tend to increase as the num-
ber of cycles required for cache lookups (and misses) grows.

Note that sending speculative requests may increase power
consumption (due to additional lower-level cache opera-
tions). However, as with pre-fetch filtering, if the system can
successfully identify the small set of memory references that
are likely to cause cache misses (and especially cascading
cache misses), the performance benefits of such requests may
outweigh the power costs. Furthermore, in some embodi-
ments the system can be tuned to only selectively send specu-
lative requests for instructions that are in the critical path of
program execution. For instance, the system may only send
speculative requests for memory references that the compiler
has identified as being in a critical path and being very likely
to cause a cascading miss, thereby using additional resources
only in situations where there are clear benefits.

Caches located lower in the memory hierarchy tend to be
highly interleaved and otherwise designed to support mul-
tiple requests from client caches (e.g., multiple higher-level
caches), so additional speculative requests should not cause
substantial additional contention in lower-level caches. In
some embodiments, lower-level caches may signal their load
level to higher-level caches, which may then reduce the num-
ber of speculative requests when load levels are high. Alter-
natively, speculative requests may be marked in a manner that
clearly distinguishes them from non-speculative requests,
allowing lower-level caches to selectively drop lower-priority
speculative requests when load levels are high (e.g., giving
known misses higher priority). Note that, unlike pre-fetching
techniques, the described techniques occur at the time of the
actual memory access, and hence do not pollute any of the
caches involved (i.e., the data being accessed will be used
immediately).

Note also that the described techniques need to ensure that
the cache coherence protocol can deal with speculation, and
that cache consistency is maintained. For example, in the case
of an inclusive L2 cache (e.g., where data cached in the [.1
cache is guaranteed to also be in the L2 cache), simultaneous
requests sent to the .1 and 1.2 caches are a non-issue; if the
requested memory address was in the L1 cache, the value
returned from the [.2 cache does not affect cache coherency,
and can be discarded. However, if a speculative technique
bypasses the L1 cache and only sends a speculative request to
the L2 cache, the system needs to ensure that a value returned
from the L2 cache does not violate cache consistency (e.g., if
newer data for the memory address is stored in the [.1 cache,
the value from the [.2 cache is actually invalid).

In some embodiments, pre-fetch filtering and speculative
loads may be selectively enabled or disabled. For instance,
while previous work seems to indicate that pre-fetching tech-
niques typically offer performance benefits for both tradi-
tional desktop workloads as well as commercial workloads,
in some situations the benefits of such approaches may
depend on the full ensemble of processes that are executing
concurrently. Hence, an operating system may selectively
enable pre-fetching filtering and/or speculative loads on a
per-process basis.

In summary, embodiments of the present invention seek to
improve the efficiency of pre-fetching efforts by categorizing
memory reference instructions based on their past miss rates,
and then using these categorizations to filter pre-fetch
requests in a manner that offers the performance benefits of
common pre-fetching schemes while consuming less cache

20

25

35

40

45

14

and memory bandwidth (and thus less total power). Further-
more, in situations where additional cache traffic can be tol-
erated, the described techniques can further improve perfor-
mance by also using these categorizations to selectively issue
speculative loads to one or more additional levels of the
memory hierarchy. Combined, these two techniques signifi-
cantly reduce the additional cache access power typically
associated with pre-fetching, while also reducing cache miss
latency, thereby improving processor performance.
Computing Environment

In some embodiments of the present invention, techniques
for reducing pre-fetch overhead and cache miss delays can be
incorporated into a wide range of computing devices in a
computing environment. For example, FIG. 6 illustrates a
computing environment 600 in accordance with an embodi-
ment of the present invention. Computing environment 600
includes a number of computer systems, which can generally
include any type of computer system based on a micropro-
cessor, a mainframe computer, a digital signal processor, a
portable computing device, a personal organizer, a device
controller, or a computational engine within an appliance.
More specifically, referring to FIG. 6, computing environ-
ment 600 includes clients 610-612, users 620 and 621, servers
630-650, network 660, database 670, devices 680, and appli-
ance 690.

Clients 610-612 can include any node on a network that
includes computational capability and includes a mechanism
for communicating across the network. Additionally, clients
610-612 may comprise a tier in an n-tier application archi-
tecture, wherein clients 610-612 perform as servers (servic-
ing requests from lower tiers or users), and wherein clients
610-612 perform as clients (forwarding the requests to a
higher tier).

Similarly, servers 630-650 can generally include any node
on a network including a mechanism for servicing requests
from a client for computational and/or data storage resources.
Servers 630-650 can participate in an advanced computing
cluster, or can act as stand-alone servers. For instance, com-
puting environment 600 can include a large number of com-
pute nodes that are organized into a computing cluster and/or
server farm. In one embodiment of the present invention,
server 640 is an online “hot spare” of server 650.

Users 620 and 621 can include: an individual; a group of
individuals; an organization; a group of organizations; a com-
puting system; a group of computing systems; or any other
entity that can interact with computing environment 600.

Network 660 can include any type of wired or wireless
communication channel capable of coupling together com-
puting nodes. This includes, but is not limited to, a local area
network, a wide area network, or a combination of networks.
In one embodiment of the present invention, network 660
includes the Internet. In some embodiments of the present
invention, network 660 includes phone and cellular phone
networks.

Database 670 can include any type of system for storing
data in non-volatile storage. This includes, but is not limited
to, systems based upon magnetic, optical, or magneto-optical
storage devices, as well as storage devices based on flash
memory and/or battery-backed up memory. Note that data-
base 670 can be coupled: to a server (such as server 650), to a
client, or directly to a network. In some embodiments of the
present invention, database 670 is used to store information
related to cache hit and miss likelihoods. Alternatively, other
entities in computing environment 600 may also store such
data (e.g., servers 630-650).

Devices 680 can include any type of electronic device that
can be coupled to a client, such as client 612. This includes,

US 9,176,878 B2

15

but is not limited to, cell phones, personal digital assistants
(PDAs), smartphones, personal music players (such as MP3
players), gaming systems, digital cameras, portable storage
media, or any other device that can be coupled to the client.
Note that, in some embodiments of the present invention,
devices 680 can be coupled directly to network 660 and can
function in the same manner as clients 610-612.

Appliance 690 can include any type of appliance that can
be coupled to network 660. This includes, but is not limited to,
routers, switches, load balancers, network accelerators, and
specialty processors. Appliance 690 may act as a gateway, a
proxy, or a translator between server 640 and network 660.

Note that different embodiments of the present invention
may use different system configurations, and are not limited
to the system configuration illustrated in computing environ-
ment 600. In general, any device that includes one or more
caches in a memory hierarchy may incorporate elements of
the present invention.

FIG. 7 illustrates a computing device 700 that includes a
processor 702 and a memory 704. Processor 702 includes an
L1 cache 706 and an L2 cache 708; L1 cache 706, .2 cache
708, and memory 704 form a multi-level memory hierarchy
for processor 702. Processor 702 also includes an executing
mechanism 710, a determining mechanism 712, and a specu-
lation mechanism 714. Computing device 700 uses executing
mechanism 710, determining mechanism 712, and specula-
tion mechanism 714 to filter pre-fetch requests in a manner
that reduces pre-fetching overhead.

During operation, computing device 700 uses executing
mechanism 710 to execute an instruction that involves a
memory reference which is directed to acacheline (e.g.,in L1
cache 706). Upon determining that the memory reference will
miss in a cache, determining mechanism 712 determines
whether the instruction frequently leads to cache misses. If
s0, speculation mechanism 714 issues a pre-fetch request for
one or more subsequent cache lines to memory 704. Note that
filtering pre-fetch requests based on instructions’ likelihood
to miss reduces pre-fetching overhead.

In some embodiments of the present invention, some or all
aspects of executing mechanism 710, determining mecha-
nism 712, and/or speculation mechanism 714 can be imple-
mented as dedicated hardware modules in computing device
700. These hardware modules can include, but are not limited
to, processor chips, application-specific integrated circuit
(ASIC) chips, field-programmable gate arrays (FPGAs),
memory chips, and other programmable-logic devices now
known or later developed.

Processor 702 can include one or more specialized circuits
for performing the operations of the mechanisms. Alterna-
tively, some or all of the operations of executing mechanism
710, determining mechanism 712, and/or speculation mecha-
nism 714 may be performed using general-purpose circuits in
processor 702 that are configured using processor instruc-
tions. Also, while FIG. 7 illustrates executing mechanism
710, determining mechanism 712, and speculation mecha-
nism 714 as being internal to processor 702, in alternative
embodiments some or all of these mechanisms can be exter-
nal to processor 702.

In these embodiments, when the external hardware mod-
ules are activated, the hardware modules perform the methods
and processes included within the hardware modules. For
example, in some embodiments of the present invention, the
hardware module includes one or more dedicated circuits for
performing the operations described below. As another
example, in some embodiments of the present invention, the
hardware module is a general-purpose computational circuit
(e.g., a microprocessor or an ASIC), and when the hardware

20

30

40

45

50

55

65

16

module is activated, the hardware module executes program
code (e.g., BIOS, firmware, etc.) that configures the general-
purpose circuits to perform the operations described above.

The foregoing descriptions of various embodiments have
been presented only for purposes of illustration and descrip-
tion. They are not intended to be exhaustive or to limit the
present invention to the forms disclosed. Accordingly, many
modifications and variations will be apparent to practitioners
skilled in the art. Additionally, the above disclosure is not
intended to limit the present invention. The scope of the
present invention is defined by the appended claims.

What is claimed is:

1. A computer-implemented method for filtering pre-fetch
requests to reduce pre-fetching overhead, the method com-
prising:

executing an instruction that involves a memory reference

which is directed to a memory;

determining a frequency of cache misses for the instruction

from a tracked history of cache misses for the instruc-
tion;

determining a frequency of performance penalties of the

cache misses from a tracked history of performance
penalties of the cache misses for the instruction;

when the frequency of cache misses exceeds a threshold,

filtering a pre-fetch request that is associated with the
instruction; and

otherwise, when the frequency of cache misses does not

exceed the threshold:

when the frequency of performance penalties exceeds a
second threshold, causing at least a cache line to be
pre-fetched by sending the pre-fetch request; and

otherwise, filtering the pre-fetch request.

2. The computer-implemented method of claim 1,

wherein issuing the pre-fetch request comprises detecting

an access pattern for additional memory references fol-
lowing the instruction; and

wherein selectively filtering the pre-fetch request based on

the instruction’s likelihood of a cache miss reduces pre-
fetching overhead and cache power consumption.

3. The computer-implemented method of claim 1, wherein
determining whether the instruction frequently triggers cache
misses further comprises one or more of the following:

receiving an indication associated with the instruction that

memory references initiated by the instruction fre-
quently miss in the cache; and

using tracking data stored during the execution of a pro-

gram to determine that the instruction frequently trig-
gers misses in the cache.

4. The computer-implemented method of claim 3, wherein
the method further comprises:

performing profiling operations while executing the pro-

gram on a processor to generate profiling information;
analyzing the profiling information to identify that the
instruction is likely to involve a cache miss; and
modifying the instruction to indicate that the instruction is
likely to involve a cache miss.
5. The computer-implemented method of claim 4,
wherein modifying the instruction comprises marking a
field in the instruction to indicate a likely cache miss;
wherein a marked field indicates that the pre-fetching
request should be issued when executing the instruction.

6. The computer-implemented method of claim 3, wherein
tracking the number of cache misses for the instruction com-
prises:

using a counter that counts a number of times that the

instruction has executed; and

US 9,176,878 B2

17

calculating a difference between the counter and at least
one of a miss counter and a hit counter for the instruc-
tion.

7. The computer-implemented method of claim 3, wherein
tracking the number of cache misses for the instruction com-
prises:

using a counter that counts a number of times that the

instruction has executed; and

calculating a difference between the counter and a saturat-

ing counter.

8. The computer-implemented method of claim 1, further
comprising determining whether the number of cache misses
exceeds a threshold by weighing previous misses differently
than previous hits.

9. The computer-implemented method of claim 1,

wherein the cache is part of a multi-level memory hierar-

chy;

wherein upon determining that the instruction frequently

leads to multi-level cache misses, a pre-fetch mecha-
nism is configured to simultaneously send multiple
speculative pre-fetch requests to multiple levels of the
multi-level memory hierarchy in parallel to reduce
lookup latency; and

wherein filtering the pre-fetch request comprises filtering

two or more of the parallel multi-level requests.

10. The computer-implemented method of claim 1,
wherein the instruction is a load instruction.

11. The computer-implemented method of claim 1,

wherein determining whether the instruction frequently

leads to cache misses further comprises determining a
predicted performance penalty associated with cache
misses for the instruction; and

wherein the method further comprises determining

whether to issue the pre-fetch request based on the pre-
dicted performance penalty.

12. A computer system that filters pre-fetch requests to
reduce pre-fetching overhead, comprising:

a processor;

a cache; and

amemory;

wherein, while executing an instruction that involves a

memory reference which is directed to the memory, the
processor is configured to:
determine a frequency of cache misses for the instruc-
tion from a tracked history of cache misses for the
instruction;
determine a frequency of performance penalties of the
cache misses from a tracked history of performance
penalties of the cache misses for the instruction;
when the frequency of cache misses exceeds a threshold,
filtering a pre-fetch request that is associated with the
instruction; and
otherwise, when the frequency of cache misses does not
exceed the threshold:
when the frequency of performance penalties exceeds
a second threshold, causing at least a cache line to
be pre-fetched by sending the pre-fetch request;
and
otherwise, filtering the pre-fetch request.
13. The computer system of claim 12,
wherein issuing the pre-fetch request comprises detecting
an access pattern for additional memory references fol-
lowing the instruction; and
wherein selectively filtering the pre-fetch request based on
the instruction’s likelihood of a cache miss reduces pre-
fetching overhead and cache power consumption.

18

14. The computer system of claim 12, wherein determining
whether the instruction frequently triggers cache misses fur-
ther comprises one or more of the following:

receiving an indication associated with the instruction that

5 memory references initiated by the instruction fre-
quently miss in the cache; and

using tracking data stored during the execution of a pro-

gram to determine that the instruction frequently trig-

gers misses in the cache.

15. The computer system of claim 12, wherein determining
tracking the number of cache misses for the instruction com-
prises:

using a counter that counts a number of times that the

instruction has executed; and

calculating a difference between the counter and at least

one of a miss counter and a hit counter for the instruc-

tion.

16. The computer system of claim 12, wherein the cache is
part of a multi-level memory hierarchy;

wherein the cache is part of a multi-level memory hierar-

chy;

wherein upon determining that the instruction frequently

leads to multi-level cache misses, a pre-fetch mecha-
nism is configured to simultaneously send multiple
speculative pre-fetch requests to multiple levels of the
multi-level memory hierarchy in parallel to reduce
lookup latency; and

wherein filtering the pre-fetch request comprises filtering

two or more of the parallel multi-level requests.

17. A processor that filters pre-fetch requests to reduce
pre-fetching overhead, comprising:

a cache, wherein the cache is part of a multi-level memory

hierarchy;

an executing mechanism that is configured to execute an

instruction that involves a memory reference which is
directed to a memory in the hierarchy, wherein the
executing mechanism is configured to determine a fre-
quency of cache misses for the instruction from a tracked
history of cache misses for the instruction whether the
instruction, wherein the executing mechanism is further
configured to determine a frequency of performance
penalties of the cache misses from a tracked history of
performance penalties of the cache misses for the
instruction; and

a pre-fetch mechanism that is configured to:

when the frequency of cache misses exceeds a threshold,

filtering a pre-fetch request that is associated with the
instruction; and

otherwise, when the frequency of cache misses does not

exceed the threshold:

when the frequency of performance penalties exceeds
a second threshold, causing at least a cache line to
be pre-fetched by sending the pre-fetch request;
and

otherwise, filtering the pre-fetch request.

18. The method of claim 3, wherein tracking the number of
cache misses for the instruction comprises:

using a counter that counts a number of times that the

instruction has executed; and

calculating a difference between the counter and a hit

counter for the instruction, and

wherein the method further comprises, when the instruc-

tion hits on a pre-fetched cache line, not incrementing

the hit counter for the instruction.

20

25

30

35

40

45

50

55

65
k0 ok &k ok

